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The motion of a perfect gas in a closed geometry is studied when it experiences 
large, transient, spatially non-uniform volumetric heating caused by the passage of 
energetic particles or intense light through the gas. The spatial non-uniformity of the 
heating results from the fact that the energy deposition in the gas is characterized by 
a range, a lengthscale which is inversely proportional to the local gas density. The 
equations of motion of the gas are acoustically filtered and then specialized to a one- 
dimensional problem. When written in Lagrangian form, the equations are reduced 
to a system of ordinary differential equations. Because of the special form of the one- 
dimensional range-dependent volumetric heating source term, this system can be 
solved analytically. Limitations on the applicability of this approximate analytical 
solution are discussed. Numerical simulations of specific cases for which the solution 
is valid are in agreement with the solution. 

1. Introduction 
The passage of energetic particles or intense light through a sample of gas results 

in a volumetric energy deposition within the gas. This energy deposition is largest 
near the origin of the particles or photons and small (possibly zero) when the distance 
from the origin to the observation point within the gas exceeds the range, denoted 1, 
essentially the thickness of a gas layer (of specified density) that will absorb most or 
all of the incident energy flux. This spatial non-uniformity sets up pressure gradients 
in the gas. As the gas responds to these gradients and flows away from the regions 
of largest energy deposition, the changing gas density modifies the energy source 
term. This feedback results from two facts. First, the range in the gas is not a global 
constant; rather, it is a local quantity inversely proportional to the gas density. 
Second, the energy deposition depends on the range, and hence the gas density, in a 
non-local fashion: the energy flux at a certain location in the gas depends on the 
integral J1-' ds, which is proportional to Jp ds, along the path from the particle or 
photon origin to the observation point. The power density source term is given by 
the negative of the divergence of this flux and as such is a function of the integral 
Jpds and also is proportional to the gas density a t  the observation point. 

Problems of this sort occur in many different contexts. Absorption of infrared light 
by gas mixtures containing carbon dioxide or other polyatomic species can be 
described by the above model under certain circumstances (Plass & Yates 1965). One 
example involving particles is the energy deposition from an electron beam 
propagating through air or other gases (Samlin & Patterson 1987). Another 
important example involves the passage of fission fragments through a gas. 
Typically, thermal neutrons are employed to induce nuclear reactions in a thin layer 
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of fissilc material coating the inner surface of a gas-filled container (Miley 1970). 
Some of the fission fragments thus produced escape into the gas and deposit energy 
there, a process referred to henceforth as pumping. The fission-fragment energy 
source term depends on the fission-fragment ranges in the gas and therefore affects 
the gas density field as described above. 

Applications of fission-fragment energy deposition involve direct conversion of 
nuclear energy into electricity (Miley 1970) or coherent light (Miley 1970 ; McArthur 
& Tollefsrud 1975). In devices such as electrical cells and nuclear-reactor-pumped 
lasers, it is important to know the spatial and temporal variation of the energy source 
term within the gas. This requires an understanding of the gas motion and resultant 
density changes. Furthermore, knowledge of the density field inside a nuclear- 
reactor-pumped laser cavity is essential for calculations of optical mode shapes and 
beam steering within the laser cavity. This is because the index of refraction is equal 
to unity plus a term proportional to the gas density (Born & Wolf 1980, pp. 

Some numerical calculations have been performed recently to analyse the 
gasdynamics of electron-beam pumping (Samlin & Patterson 1987) and fission- 
fragment pumping (Torczynski & Gross 1986; Neal et al. 1987). Although useful to 
model individual experiments, these simulations provide little physical insight, 
Moreover, prediction of trends is laborious, requiring simulation of many different 
cases. Also, in the works mentioned above, other sources of spatial variation were 
included in the pumping, and the resulting additional complexity of the gas motion 
often obscured the role of the range dependence. Thus, an analytical approach is 
desirable to isolate and elucidate the interaction of the range-dependent energy 
source term with the gasdynamics. 

87-90). 

2. The acoustically filtered equations of motion 
Consider a perfect, inviscid, non-conducting gas which is initially in a motionless, 

uniform thermodynamic state (pressure po, temperature T,, and density po) .  I t  is 
confined within a closed volume V with surface S ,  through which an energy flux 
carried by particles or photons is introduced. The energy is absorbed within the gas 
although some of the particles or photons may completely traverse the chamber and 
be lost. The volumetric heating thus produced is denoted by Q .  A detailed description 
of this term for the special case of fission-fragment heating is given in Appendix 
A. 

The equations describing the motion of the gas are the conservation equations for 
mass, momentum, and energy a 

-p+v.pu = 0, (2.1) at 

a 
-pu+v*puu = -vp, (2.2) at 

a 
at 
-p(e  + $2) + V.pu(e + p / p  + b2) = Q ,  

and the equation of state for a perfect gas 

(2.3) 

(2.4) p = RpT = ( y -  1 )pe .  
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A suitable combination of the above four equations yields 

2-t at y p v - u + u . v p  = ( y -  1)Q. (2.5) 

Note that the coupling of the heat addition and the gas motion vanishes as y 
approaches unity because in this limit a gas molecule stores energy in its many 
internal degrees of freedom, rather than in its three translational degrees of freedom 
(pressure). 

At this point, acoustic filtering can be applied to the above equations. As discussed 
by Rehm & Baum (1978), Paolucci (1982), Baum et al. (1983), and Schutt & Baer 
(1987), the acoustic-filtering methodology acts to remove sound waves from the 
equations of motion. I n  the context of the heat-addition problems considered here, 
the heat addition must be slow (this will be quantified below  see also the above 
references) so that the acoustic pressure perturbations produced by the spatial non- 
uniformity of the heating are small compared with the mean pressure. Thus, acoustic 
filtering involves making the assumption that the spatial variations of the pressure, 
denoted $, are small compared with the mean pressure, denoted p (the latter is a 
function of time alone). In  some sense, it seems paradoxical to make such an 
assumption since the pressure gradients drive the motion ; however, the justification 
for this assumption is that the Mach numbers of the flow are much smaller than unity 
(see Appendix B) and hence the pressure variations within V are small compared with 
the mean pressure. Limitations on the theory imposed by this assumption are 
discussed in a later section. The acoustically filtered version of (2.5) is 

-+ypv*u= dP (y-1)Q. 
dt 

Equation (2.6) can be partitioned into two equations in the following manner. 
Integrate (2.6) over the volume V and normalize the result by V.  The resulting 
equation, 

- dir = (y-  1) Q(t ) ,  
dt 

describes the time evolution of the pressure in terms of Q, the spatial average of the 
energy source term, where 

&(t) 7 Q(t ,  X) d3x. (2.8) 1 
Note in passing that the integral over V of the second term in (2.6) is zero since by 
Gauss’ theorem the volume integral can be converted into a surface integral 
involving the normal component of the velocity, which vanishes identically on the 
boundary. (In the event that gas could enter or leave the enclosure through an 
opening in the wall, an additional term, resulting from the mass flow through this 
opening, would appear in (2.7) by virtue of this surface integral. A relation 
determining the flow rate in terms of the internal and external pressures would then 
be necessary (Rehm & Baum 1978). Appendix C contains a brief discussion of the 
theory in the absence of walls.) Subtracting (2.7) from (2.6) yields a relation for the 
divergence of the velocity, 

in terms of Q, the difference between the source term and its spatial average, 

where Qct, x) = a t ,  X ) - & ( t ) .  (2.10) 
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The pressure variations cannot be ignored in (2.2) ; however, the gradient of the mean 
pressure vanishes identically, leaving 

a 
--pu+v.puu = -V$. 
at 

(2.11) 

When combined with an explicit form for the volumetric energy source term Q ,  (2.1), 
(2.7), (2.9), and (2.11), together with definitions (2.8) and (2.10) and the normal 
velocity boundary condition, 

form a closed system of equations describing the motion of a gas experiencing non- 
uniform volumetric heating. 

u-ri = 0, (2.12) 

3. The one-dimensional problem 
3.1. Equations of motion 

Consider the case of a gas confined between two infinite parallel walls separated by 
a distance D = 2L. At some point in time, equal and opposite energy fluxes enter the 
gas from the two walls. Volumetric absorption of the energy by the gas gives rise to 
the energy source term Q .  The situation described above is one-dimensional and 
symmetric. The coordinate x is defined such that the wall inner surfaces are located 
at x = 4 L .  The centreplane ( x  = 0) is thus the plane of symmetry, so henceforth only 
the region from x = 0 to x = L will be considered. In  this region, the motion of the 
gas is described by the one-dimensional versions of (2.1), (2.7), (2.8), (2.9), and 
(2.10) : 

ap ap au 
- + u - + p -  = 0, 
at ax ax 

- dc (y-l)Q, 
dt (3.2) 

O(t,  2) Q ( t ,  2 )  - &(t). (3.5) 

Note in passing that i t  is not necessary to solve (2.11) in a one-dimensional system 
unless determination of $ is desired. The boundary conditions for the velocity u are 
that i t  must vanish a t  the centreplane (by symmetry) and a t  the wall: 

u(t, 0) = u(t, L )  = 0. (3.6) 

3.2 The range-dependent source term 
In  order to form a closed system of equations, a specific representation of the one- 
dimensional range-dependent volumetric energy source term &(t ,  x)  at a location x 
within the gas a t  time t is required. The source term has the form 

&(t, X) = Qo h(t/to)flx; ~ ( t ,  @/pol. (3.7) 
Here, Q0 is the power density scale of the pumping. The function h is a dimensionless 
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O( 1) function giving the time dependence of the pumping pulse, with timescale to. It 
has the properties that h( - co) = 0 and h,,, = 1 and frequently has the additional 
properties that h( + co) = 0 and that 

lI 4 7 )  d7 

is finite (in cases of physical interest, h often resembles a Gaussian function). 
The function f, also a dimensionless 0(1) function, is determined at a point x by 

values of the gas density p at all points 2 between 0 and L .  Recall that the range I 
is inversely proportional to the local gas density. 

where 1, has been defined to be 
1 - Aref 
0 -  

Po 
(3.9) 

and Are* is a constant for a given mixture of molecular species. The range-dependent 
nature off is manifested through its dependence on two quantities: 

(3.10) 

(3.11) 

(The equalities result from the symmetry of the problem and from the fact that 

(3.12) 

by conservation of mass.) The quantities in (3.10) and (3.11) determine the contri- 
butions to f from the energy fluxes entering the chamber a t  x = L and x = -L, 
respectively. Now the volumetric energy source term is just the negative of the 
divergence of the particle or photon energy flux, so the function f has the special 

Here, the derivative of F with respect to its argument is denoted by F’ .  Without loss 
of generality, F ( 0 )  is taken to be zero. Note that the argument of F and F‘ is the 
amount of mass contained between the centreplane (x = 0) and the x-location, 
normalized by the amount of mass contained between the centreplane and the wall. 
As such, it vanishes a t  x = 0 and rises to unity at x = L. Thus, the value of f[x; 
p(t, 2) /p0]  at  a point x depends in a non-local fashion on the density field p(t, 2) .  

The function F’(6) has one of two possible forms (see figure 1). In most cases, the 
function F’(6)  is positive with positive slope (except a t  f = 0, where the slope 
vanishes by symmetry) and positive concavity. In other cases, however, there may 
be a value 6, such that F’(5)  is identically zero in the region 0 < 5 < 5,. In the region 
E0 < 6 < 1, F’( f )  is positive with positive slope and concavity. In either case, F’( t )  is 
smallest (possibly zero) a t  the centreplane and largest a t  the walls. 

The functions F and F’ also have the dimensionless parameter LIZ, = p, LIA,,, as 
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Ordinary Exceptional 

FIGURE 1. The ordinary and exceptional forms of the function F‘(5) .  

an argument. Typically, L/Z, is O(1). If L/Z, were very small, then only a small 
fraction of the available energy would be absorbed by the gas. On the other hand, if 
L/Z, were very large, then a large portion of the gas would remain essentially 
unpumped. This and other model-specific dimensionless parameters are important 
since they determine the specific details of the shape and amplitude of F and F’;  
however, they are all constant for a given case and therefore will not be listed as 
additional arguments of F and F‘. A detailed account of F and F‘ and their 
dimensionless parameters for the special case of fission-fragment energy deposition is 
given in Appendix A. 

3.3. Special properties of the source term 

The function f ,  as described by (3.13), has several special properties which make 
analytical solution of thc equations possible. Note that all of the complicated density 
dependence of f is contained in its argument. Consequently, the computationally 
intensive multidimensional integral involving p which defines f (see Appendix A for 
the specific case fission-fragment energy deposition) need be calculated for only one 
density field to  determine the functions F and F’. It is convenient to perform these 
calculations assuming p(t ,Z) /po = 1. In  this case, the function F‘ is seen from (3.13) 

(3.14) 
to be 

To reiterate, only the argument of F ,  not the function F itself, varies in time, a fact 
that will prove to be important. 

Another important fact is that the spatial average off [x; p(t, Z) /pO]  is independent 
of time. Using (3.12) and (3.13), the spatial average off can be calculated explicitly 
to be 

hS:fdx = F(1). (3.15) 

Note in passing that F(  1 )  is a function of L/l,  = po L/Aref. Since the spatial average 
off is constant, it  can be used to normalize f and F .  Define the normalized functions 
g and G to be 

g = f / F ( 1 ) ,  (3.16) 

G = F / F ( l ) .  (3.17) 

a 
ax 

P’(x/L)  = L - F ( x / L )  = f[x; 11. 
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(3.18) 

(3.19) 

(3.20) 

At this point, an important observation can be made about the form of the 
function g.  Let xp( t ,  xo) be the particle path such that xp( - 00, xo) = x,, where again 
the coordinate system origin is located at  the centreplane. From (3.13), (3.16), and 
(3.17), evaluation of g at x = xp(t, x,) yields the relation 

(3.21) 
PO 

This follows from the fact that, since xp(t ,  xo) is a particle path, conservation of mass 
implies that (3.12) can be generalized to 

(3.22) 

Hence, the source term following a Jluid particle depends only on the particle’s 
density, its initial position, and the average source term, 

(3.23) 

4. Analytical solution 
The original system of three coupled partial differential equations can now be 

reduced to three uncoupled ordinary differential equations, and this new system of 
equations can be solved analytically. 

First, (3.2) and (3.19) are combined to obtain an equation for the time evolution 
of the pressure, 

(4.1) - dp = ( y -  1) Q0F(1) h(t/to). 
dt 

The integration of this equation is straightforward, yielding 

where the function H is defined to be 

(4.3) 

Next, an equation describing the time evolution of the density of a particle 
originating at x,, denoted 

is obtained by combining (3.1), (3.2), (3.3), (3.20), and (3.21) to produce 

Pp(t, 2 0 )  = A t ,  xpK xo)), (4.4) 

(4.5) 
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The integration of this equation is straightforward, yielding 

1 
(4.6) 

P p ( 4 X o )  - - 

Po G’(xo/L)+ (1 - G ’ ( x o / L ) )  ( m / P o ) - l ’ f  

To complete the solution, all that remains is to solve for the particle path 
x,(t, xo). To do this, the conservation-of-mass equation (3.1) is rewritten in Lagran- 
gian form and combined with (4.6) to produce 

@ t  = G’(xo/L)+ ( 1  -G’(xo/L)) (P(~) /Po) - l / y .  (4.7) 

The integration of this equation is straightforward, yielding 

x& xo)/L = G(xo/L) + (xo/L - G(xo/L)) (P(t)/Po)-”Y. (4.8) 

Taking the time derivative of (4.8) and using (3.2) yields a relation for the velocity 

Note that u < 0, with the equality applying only when h = 0 or when xo = 0 or L.  

5. Discussion of the solution 
5.1. Implementation 

Summarized below are the main results of the solution: (3.7), (3.19), (3.14), (3.16), 
(3.17), (4.2), (4.3), (4.8), (4.6), (4.9), and (3.23). 

Q(t2 x) = Qo h( t / to) f[x;  ~ ( t ,  z ) /~o l  = &(t) p(t,  z)/pol, (5.1) 

&(t) = QOF(l)h(t/tO), (5.2) 

P’(x/L) =f[x; 11, P ( 0 )  = 0, (5 .3)  

9 =f/JYl), G(x/L)  = F(x/L)/F(l), (5.4) 

(5.5) 

Once the shape function f[x ; 11 is specified (for example, from the detailed model of 
fission-fragment energy deposition as outlined in Appendix A), the solution is fully 
determined in terms of this function. Evaluation of the solution can be divided into 
the following stages : 
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(i) discretize the system to yield a set of particle initial locations (xo values) 

(ii) solve for F( 1) and the values of G’ and G corresponding to each xo value using 

(iii) use (5.5) to solve for the pressure a t  a given time; 
(iv) determine the new location of each particle from (5.6), its density from (5.7), 

its velbcity from (5.8), the source term from (5.9), and any other thermodynamic 
variables from the equation of state. 

between 0 and L ; 

(5.3) and (5.4) and the explicit model for f[x; 13; 

5.2. Observations 
Several observations can be made about the results summarized in the above section. 
The basic structure of the solution represents a smooth flow of gas inward toward the 
centreplane. Since the quantity xo/L-G(x, /L)  is positive away from xo = 0 or L ,  
where i t  vanishes, all particle velocities are negative, and the particle locations 
continue to  decrease so long as heat is added to  the gas. Consider the particle which 
was originally located a t  x,, where xo = x, maximizes the quantity zo/L-G(so/L).  
By the construction of the function G, there is exactly one such particle, which is 
hereafter denoted the ‘null’ particle. From (5.6) and (5 .8) ,  it is seen that the null 
particle has the greatest inward displacement and the largest negative velocity a t  
every time. Moreover, since the quantity xo/L - G(xo/L) is maximized a t  xo = x,, the 
condition G’(x,/L) = 1 is satisfied. Thus, the null particle undergoes no density 
change as it moves, as shown by (5.7). Actually, this result follows directly from the 
continuity equation : if au/ax vanishes (as it does at the velocity extremum occurring 
at xm), then a t  this point Dp/Dt also must vanish. Particles with larger (smaller) 
xo values have values of G’ that are correspondingly larger (smaller) than unity and 
therefore are continually expanded (compressed). 

It should be emphasized that all of the phenomena described above are driven by 
the ‘desire’ of the source term to become progressively more spatially uniform as 
time passes. This is made clear by the following physical argument. The initially 
existing gradients in Q form small pressure gradients (see Appendix B) since the 
pressure will be very slightly larger or smaller than the mean pressure in regions 
where Q is larger or smaller than &, respectively. Thus, these pressure gradients act 
to transport gas from regions of large Q to regions of small Q. From (3.23), it  is seen 
that the source term a t  a point is roughly proportional to the local gas density. A 
decrease or increase of the gas density in a region of correspondingly large or small 
Q acts to decrease or increase Q, respectively. Therefore, the gas motion induced by 
the spatial non-uniformity of Q acts to reduce the spatial non-uniformity of Q .  
Incidentally, the null particle always receives energy a t  the average rate, so 
Q& 2,) = 

A striking feature of the analytical solution is the fact that  the pressure rise is 
completely decoupled from the details of the gas motion. As it  turns out, this is not 
directly a consequence of the acoustic filtering assumption (which admittedly ignores 
the very slight variations of pressure that do exist within the gas) but rather follows 
from the range-dependent form of the energy sourte term, specifically from the fact 
that the spatial averages off[z;p(t,E)/p,] and hence of Q ( t ,  x )  are independent of the 
details of the density distribution. Thus, the pressure can be calculated a t  all times 
of interest without knowledge of the density and/or velocity distributions at these 
times. 

Conversely, the particle positions and densities a t  a given time depend only on the 
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known function G and on the value of p ( t ) / p , .  The details of the previous history of 
the pumping, as embodied in the function h, are forgotten except in an integral sense. 
Thus, the maximum amount of variation that will occur in the density field, and 
hence in the refractive index field, is determined solely by the maximum pressure 
rise, which is related by the perfect gas law to the deposited average energy 
density. 

It is instructive to consider what occurs when p ( t ) / p ,  becomes large. There are 
two distinct possibilities. If there is a region 0 < g < E, in which G’([ )  is identically 
zero, then the gas density will continue to increase in this region as long as heat 
addition continues outside this region. Note that the function G ( [ )  is also identically 
zero in this region, so in the region 0 < x, < Lg, the relations (5.6), (5.7), and (5.8) 
simplify considerably : 

Zp = % J ( P / P o ) - l ’ ~ ,  (5.10) 

P p I P o  = (F/Po) l /y>  (5.11) 

(5.12) 

Note that the density is compressed uniformly in this region and hence the velocity 
is strictly linear in distance from the centreplane. The above equations describe 
isentropic compression of the gas, as must be the case since no heat (entropy) is 
deposited in this region by the source term (it is quite generally true that Ds/Dt = 

RQ/p) .  
If G’(5) is strictly positive, the following results hold: 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

In this case, a limiting density profile is reached. As implied above, the time required 
to approach this limiting density profile is the time required for the pressure to 
greatly exceed the initial pressure. More precisely, this time t ,  is given from (5.6) and 

I1 -G’(Ol (E-G(5)) } = max{&-l,l-- } .  (5.17) 

It should be observed that the approach to the steady density profile is algebraic in 
the pressure ratio and as such is usually a ‘slow’ process (not exponential in time). 

Note that dependence oft, on p,. Consider two experiments identical in all respects 
except that the p ,  and values to be used in the second experiment are the values 
used in the first experiment reduced by the same factor (the po values are thus the 
same). Now the average energy deposition and hence the pressure change depend on 
the similarity paramet,er L/1, = po L/A,,, and on Q,, to, and the details of h. These 
quantities are the same by design for the two experiments, so the pressure change 
p(t)  -p ,  is also the same. However, p(t) /po will rise much more rapidly in the second 
experiment, which has the lower value of p, ,  than in the first experiment. Thus, the 
second experiment has the smaller t ,  value and will show larger density variations 

(5.7) by 
F ( t L )  llY 

(7) G’(8  ’ G ( 0  G’(1) 
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sooner than the first experiment. This is usually viewed as undesirable. Nevertheless, 
if t ,  is smaller than to for the second experiment but not for the first experiment, then 
the density field will vary continually throughout the pulse in the first experiment 
but will reach a steady state before the pulse has terminated in the second 
experiment. A quasi-steady situation (continuing energy deposition without further 
gas motion), such as occurs for t > t ,  in the second experiment, is often desirable. 

5.3. Applicability of the theory 
At this point, i t  is useful to consider limitations on the applicability of this theory. 
For the concept of acoustic filtering to be meaningful in this problem, the energy 
deposition must be ‘slow’ in some sense. A constraint emerges naturally out of this 
idea - the time for an acoustic wave to  travel across the physical domain must be 
small compared to the timescale to, or 

L 
- 4 1. 
co to 

(5.18) 

Here, the quantity co is the initial speed of sound in the gas. If this constraint were 
violated, then considerable energy would be deposited in the gas before pressure 
equilibrium could be reached. 

It is also necessary to constrain the maximum induced velocity to be much smaller 
than co. Otherwise, large pressure gradients, which the theory assumes are not 
present, would be dynamically built up. Let UM be the largest velocity produced in 

the system, uM = max {l‘(tl s p ( t ,  x O ) ) l ) .  (5.19) 
5q.t  

Substituting (5.8) into (5.19) and requiring U ,  4 co yields the constraint 

where the velocity scale U, is defined to be 

(5.21) 

and tm = x,/L corresponds to the null particle. Note that both of the bracketed 
quantities in (5.20) are less than unity (the first bracketed quantity may be much less 
than unity if the gap separating the walls is much smaller than the range in the gas, 
that  is, if LIZo 4 1). 

Now the constraint given in (5.18) is usually sufficient to  guarantee that U,/co << 
1. If UB/co 6 1,  then (5.20) is trivially satisfied. If U,/co and H are O(1) or larger, then 
(5.20) can be expanded to  give 

(5.22) 

which is clearly satisfied by virtue of (5.18). If, however, step, top-hat, or other 
discontinuous or rapidly varying functions for h are admitted (essentially letting h 
change arbitrarily fast, so that h can be O(1) while H is still very small), then in 
addition to (5.18) it  would be necessary to require 

( U d c o )  ( f r n - G ( E m ) )  4 1. (5.23) 
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FIGURE 2. The functions G(z/L)  ( - - - - )  and G’(x/L)  (-) for the sample case (P( 1) = 1.43). 
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FIGURE 3. Plots of the normalized density field (p/po)  for the following times: - co, -0.5 ms, 
0 ms, 0.5 ms, a. The limiting normalized density field is shown as a dashed curve. 

5.4. Comparison of the theory and numerical simulations 
It is instructive to compare the analytical solution summarized above with a full 
gasdynamic numerical simulation of a one-dimensional problem. As an example, 
fission-fragment heating of argon (y  = t ) ,  initially a t  101.3 kPa and 300 K, is 
considered. The gas is contained between two parallel walls that are 2 cm apart. On 
the inner surfaces of these walls are U,O, foils that are 3 pm thick. These foils contain 



The motion of a gas experiencing volumetric heating 179 

FIGURE 4. Plots of the normalized power density field (Q/&)  for the following times: - 0 0 ,  

-0.5 ms, 0 ms, 0.5 ms, a. The limiting normalized power density field is shown as a dashed 
curve. 

-1.5 -1.0 -0.5 0 0.5 1 .o 1.5 

Time (ms) 

FIGURE 5. A comparison of the approximate analytical solution (-) and a numerical simula- 
tion (0) : time variation of the mean pressure. 

235U atoms which undergo fission reactions when subjected to a flux of thermal 
neutrons. The power density scale of the pumping is chosen to be Qo = 0.5 kW/ml, 
and the function h is taken to be the Gaussian function 
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FIQURE 6. A comparison of the approximate analytical solution (-) and a numerical simula- 
tion (0) : time variation of the average power density. 
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FIGURE 7.  A comparison of the approximate analytical solution (-) and a numerical simula- 
tion (0) : time variation of the average deposited energy density. 

with t, = 0.6 ms. Note that h can be analytically integrated to yield 

~ ( t / t , )  = +&(I +erf(t/t,,)). (5.25) 

The functions F and 0 are taken from the explicit representations for fission- 
fragment energy deposition given in Appendix A (F(1) = 1.43, and G and G' are 
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FIGURE 8. A comparison of the approximate analytical solution (-) and a numerical simula- 
tion (0) : the density field a t  t = 0 (peak pumping). 
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FIGURE 9. A comparison of the approximate analytical solution (-) and a numerical simula- 
tion (0): the power density field at t = 0 (peak pumping). 

shown in figure 2). A check of the constraint shows that the theory is applicable 
to this case since L/c,t, = 0.05 + 1 (c, = 323 m/s). Moreover, UB/co = 0.087 and 
&,-G(&J = 0.15, so (5.20) is satisfied as well. 

Figures 3 and 4 show plots of normalized density ( p / p o )  and normalized power 
density (&/&) at a variety of different times ( -  00, -0.5 ms, 0 ms, 0.5 ms, 00) .  The 
limiting profiles are also included for reference. Note that the limiting profiles are not 
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closely approached by the final ( t  = 00) profiles. This is a consequence of the fact that 
in this case (p (oo) /pO) l l y  

Figures 5-9 show the pressure, average power density, the average net energy 
density, the density field at t = 0, and the power density field a t  t = 0 as calculated 
by the above analytical approach and by a state-of-the-art numerical simulation of 
the full gasdynamic problem. The agreement is excellent. 

3, which is not much greater than unity. 
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To demonstrate what happens as L/coto approaches unity, a case was studied 
which was identical to  that above except that  to = 0.03 ms and Q0 = 10 kW/ml. 
These values were chosen to satisfy L/co to = 1 while keeping the product Qo to the 
same as in the above case. In  other words, the same amount of energy was deposited, 
but the deposition was twenty times as fast. Figures 10 and 11 show the pressure and 
density a t  the centreplane as functions of time. The full gasdynamic simulation is 
observed to match the analytical solution of the acoustically filtered equations 
remarkably well in a time-averaged sense. However, the presence of 'ripples ' in the 
full gasdynamic simulation is an indication of the fact that the acoustic-filtering 
assumptions are severely strained. If the time constant to were reduced further while 
fixing the product Qoto ,  the amplitude of the ripples would be increased, and the 
situation would be more accurately described by the wave motion resulting from 
almost instantaneous deposition of energy, rather than by the acoustically filtered 
equations of motion. 

6. Conclusions 
Acoustic-filtering ideas have been applied to the equations describing the motion 

of a perfect gas in a closed geometry experiencing range-dependent volumetric 
heating. For the one-dimensional case, the acoustically filtered equations were solved 
analytically when written in Lagrangian form. This was due to the special form of the 
range-dependent volumetric heating source term. A constraint on the applicability 
of this approximate analytical solution was found by considering the underlying 
physical basis of the acoustic filtering ideas. Numerical simulation of cases satisfying 
this constraint produced results in excellent agreement with the theory. 

The author wishes to thank R. J. Gross of Sandia National Laboratories for 
performing some of the numerical simulations included in this paper. This work was 
performed at Sandia National Laboratories, supported by the US DOE under 
contract number DE-AC04-76DP00789. 

Appendix A. Calculation of the volumetric heating caused by fission 
fragments 

The inner surface S of the volume V which contains the gas is coated with a foil, 
a thin layer of material containing fissionable atoms. When thermal neutrons 
encounter these atoms, fission reactions occur. The reaction products generally 
include several neutrons and two fission fragments, FF(l) and FF"), which carry 
away as kinetic energy the bulk of the energy release during fission. Some of the 
fission fragments escape from the foils into the gas and there deposit a portion of 
their energy, where it is rapidly thermalized. There are also fission-fragment mass 
and momentum source terms in the gas, but they are completely negligible. 

It is assumed that the fission fragments follow straight-line trajectories after 
creat.ion, that the origins of the trajectories are distributed uniformly throughout the 
foil volume, and that the trajectories are isotropically distributed in solid angle 
(Miley & Thiess 1969). The following relation describes the energy of a fission 
fragment as it travels along its trajectory (Miley & Thiess 1969). 
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Here, sf is the distance FF(m) travels from its origin within the foil to the foil surface, 
sg is the distance it travels from its origin within the foil to the observation point 
within the gas, and s is the local coordinate along the trajectory with s = O  
corresponding to the trajectory origin. Thus, sf, sg, and x(s) depend on the origin and 
angular orientation of the trajectory. The quantities Eim), l im),  and l!jm,) are the initial 
energy, the range in the foil material, and the range in the gas (when the density is 
uniformly po), respectively, of the FF'"). 

Consider a small volume AV of gas within the chamber. In  order to calculate the 
volumetric heating source term, the energy AE deposited in AV by all fission 
fragments passing through AV in a small amount of time At must be summed. Thus, 
a multiple integration must be performed which consists of a triple integral over all 
possible trajectory origins (uniformly distributed within the foil volume) and a 
double integral over all possible trajectory directions (isotropically distributed in 
solid angle). If a trajectory misses AV, i t  will obviously contribute no energy. If a 
trajectory intersects AV, the energy it deposits in AV will be the energy it loses in A V  
based on (A 1 ) .  Finally, the limit AV+O must be taken to find Q, which is defined 
as 

Taking this limit in effect undoes the double integral over solid angle. Moreover, one 
integral of the remaining triple integral over the foil volume can be performed 
analytically using the explicit representation of the fission-fragment energy given in 

The final result for an arbitrary volume V filled with a gas of an arbitrary density 
(A 1) .  

distribution p(t,  x) and mean density po is expressed as 

In  the prefactor, @ is the time-varying, spatially uniform neutron flux, cr is the cross- 
section (area) for the fission reaction, v is the number density of fissionable atoms in 
the foil, and Ere, is an arbitrary reference energy. These quantities are related to  the 
quantities Q,, and h( t / t o )  by 

The quantity r ( Q )  refers to distances measured from the observation point in the gas 
along the trajectory, and the quantities r,(SZ) and r,(SZ) are the distances to the inner 
and outer surfaces of the foil, respectively. The solid angle SZ and the distance r are 
thus a polar coordinate system with origin located a t  the observation point in the 
gas. 

For the one-dimensional geometry considered in this paper, when the inner 
surfaces of both walls are coated with foils of uniform thickness W ,  these integrals can 
be performed analytically if the gas density is uniform (Miley & Thiess 1969). Since 
the density only enters the solution in the argument of the function and does not 
affect the form, these results can be taken over directly to the case of non-uniform 

Qo h(t/to) @(t / to)  ~ V E , , , .  (A 4) 



The motion of a gas experiencing volumetric heating 185 

density. Below is a summary of the specific form of the equations for F and F'  
describing the fission-fragment volumetric heating source term f [ x ;  11 : 

G(5) = F(C)/F(1) ,  (A 5 )  

The pirn) and qi") terms are contributions from the foil located at  x = +L, and the 
pi") and qLm) terms are contributions from the foil located a t  x = -L. 

Table 1 contains the relevant parameters (Chung & Prelas 1984) for the fission 
reaction involving 235U atoms in U,O, foils: 

ii5U + knthermal + (severa1)kn + FF' l )  + FF'2). (A 14) 

Gas densities correspond to values a t  pref  = 101.3 kPa and qef = 288 K. Ranges in 
gases are inversely proportional to the density. 

Parameters for other fission reactions can be found in Kahn, Harman & Forgue 
(1965), Nguyen & Grossman (1967), Miley & Thiess (1969), Miley (1970), and Guyot, 
Miley & Verdeyen (1972). Chung & Prelas (1984) also give calculations for cylindrical 
geometries. 

Appendix B. The acoustic-filtering methodology (Paolucci 1982) 
Full implementation of acoustic filtering generates a hierarchy of equations, which 

result from the consistent expansion of the problem variables in terms of a small 
parameter. This small parameter is the Mach-number scale M .  The following 
expansions are used : 

p = p(0) +M2p'1' + . . . , 
= p ( o )  +M2 p (1)  +..., 

T = !Po) +M2T(l )  + . . . , 
u = M(U'0' + M W )  + . . . ) . 

(B 1) 

(B 2 )  

(B 3) 

(B 4) 
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Parameter Value 
1.45 

67.5 MeV 
98.7 MeV 

10.4 pm 
13.5 pm 

0.01 MeV 

1.94 cm 
2.39 cm 

TABLE 1 .  Fission-fragment energy deposition model parameters 

The source term Q ,  which sets the velocity scale, must also be expanded: 

Q = M(Q(O) +M2Q(l) + . . .). (B 5 )  

Since attention is focused on the timescale commensurate with the particle velocity 
rather than the speed of sound, the time variable is also resealed: 

r= Mt. (B 6) 

Insertion of these expansions into the conservation equations and elimination of 
the higher-order terms yields the following equations : 

(B 7) FTp'o' a + v . p(O)@) = 0 

Vp(0) = 0 (B 8) 

(B 9) a ( 0 )  + yP'o'v, u(0) + uw. v P (0) = ( y-  1 ) & ' O ' >  
gP 

When p(O), p(O), Po), Mu('), MQ('), and iIPp(l) are identified with p, p,  T ,  u, Q, and $, 
respectively, these equations are seen to be the equations of $2. The pressure 
variation ji is also constrained to have zero mean, 

$lV@ ( t ,  x) d3x = 0. (B 12) 

It is possible to solve the one-dimensional versions of (B 11) and (B 12) using 
the results of $4. Here, ji, is the pressure perturbation following the Lagrangian 
particles : 

Note that the last two integrals are positive numbers and the first integral is a 
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function that need be tabulated only once. Typically, the quantity contained in the 
first set of braces is positive for early times in the pulse and negative for later times. 
The quantity contained in the second set of braces is negative for x, = 0, positive for 
x, = L,  and increases monotonically in between. Thus, early in the pulse, the pressure 
gradients act to accelerate the flow inward, whereas a t  later times the pressure 
gradients act to decelerate the established inward flow, bringing it eventually to rest 
(the flow is always inward). Note in passing that, in accord with the expansion, 

Appendix C. Flow in an infinite, unbounded volume 
As in earlier sections, the energy deposition Q, with scale Qo, is taken to release a 

finite amount of energy over a timescale to in a finite central region characterized by 
a lengthscale L,  where L/c, to 4 1. 

Relations analogous to those of $2 are obtained by formally allowing V to become 
infinite. In this limit, Q vanishes identically, and hence p is a constant with value 
p,. Equations (2.1), (2.11), and (2.9) become the following: 

a 
- p + v . p u  at = 0, 

a 
-pu+v.puu at = -V$, 

ypo V * u = (7 - 1) Q( t ,  x). (C 3) 
From (C 3), the maximum velocity is seen to scale with QoL/po .  In  order to ful- 

fill the condition that Mach numbers be small, the relation Q0L/pncn 4 l must be 
satisfied. 

Outside the central region, Q vanishes identically. Therefore, u is divergence-free, 
so (C 1)-(C 3) reduce to the equations for incompressible flow. Thus, the far-field 
flow predicted by formal application of the theory is incompressible flow driven by 
an expanding region. 

Two remarks can be made about this observation. First, if one is concerned with 
precise qualitative and quantitative details of the far-field wave propagation 
produced by the central expanding region, this methodology does not provide a 
satisfactory result (by definition, it was not expected to) since in reality there is a 
front propagating outward with speed c, ahead of which there is no disturbance. 
Second, if one is concerned with flow details on the scales of the perturbations 
produced in the central region, then it is conjectured that this methodology gives a 
reasonable approximation to the flow field a t  a point for times much larger than the 
maximum of to and the time required for acoustic signals from thc central region to 
reach the point. 
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